首页> 外文OA文献 >Modifying the organic/electrode interface in Organic Solar Cells (OSCs) and improving the efficiency of solution-processed phosphorescent Organic Light-Emitting Diodes (OLEDs)
【2h】

Modifying the organic/electrode interface in Organic Solar Cells (OSCs) and improving the efficiency of solution-processed phosphorescent Organic Light-Emitting Diodes (OLEDs)

机译:修改有机太阳能电池(OSC)中的有机/电极界面并提高溶液处理的磷光有机发光二极管(OLED)的效率

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Organic semiconductors devices, such as, organic solar cells (OSCs), organic light-emitting diodes (OLEDs) and organic field-effect transistors (OFETs) have drawn increasing interest in recent decades. As organic materials are flexible, light weight, and potentially low-cost, organic semiconductor devices are considered to be an alternative to their inorganic counterparts. This dissertation will focus mainly on OSCs and OLEDs.As a clean and renewable energy source, the development of OSCs is very promising. Cells with 9.2% power conversion efficiency (PCE) were reported this year, compared to \u3c 8% two years ago. OSCs belong to the so-called third generation solar cells and are still under development. While OLEDs are a more mature and better studied field, with commercial products already launched in the market, there are still several key issues: (1) the cost of OSCs/OLEDs is still high, largely due to the costly manufacturing processes; (2) the efficiency of OSCs/OLEDs needs to be improved; (3) the lifetime of OSCs/OLEDs is not sufficient compared to their inorganic counterparts; (4) the physics models of the behavior of the devices are not satisfactory. All these limitations invoke the demand for new organic materials, improved device architectures, low-cost fabrication methods, and better understanding of device physics.For OSCs, we attempted to improve the PCE by modifying the interlayer between active layer/metal. We found that ethylene glycol (EG) treated poly(3,4-ethylenedioxy-thiophene):polystyrenesulfonate (PEDOT: PSS) improves hole collection at the metal/polymer interface, furthermore it also affects the growth of the poly(3-hexylthiophene) (P3HT):phenyl-C61-butyric acid methyl ester (PCBM) blends, making the phase segregation more favorable for charge collection. We then studied organic/inorganic tandem cells. We also investigated the effect of a thin LiF layer on the hole-collection of copper phthalocyanine (CuPc)/C70-based small molecular OSCs. A thin LiF layer serves typically as the electron injection layer in OLEDs and electron collection interlayer in the OSCs. However, several reports showed that it can also assist in hole-injection in OLEDs. Here we first demonstrate that it assists hole-collection in OSCs, which is more obvious after air-plasma treatment, and explore this intriguing dual role.For OLEDs, we focus on solution processing methods to fabricate highly efficient phosphorescent OLEDs. First, we investigated OLEDs with a polymer host matrix, and enhanced charge injection by adding hole- and electron-transport materials into the system. We also applied a hole-blocking and electron-transport material to prevent luminescence quenching by the cathode. Finally, we substituted the polymer host by a small molecule, to achieve more efficient solution processed small molecular OLEDs (SMOLEDs); this approach is cost-effective in comparison to the more common vacuum thermal evaporation.All these studies help us to better understand the underlying relationship between the organic semiconductor materials and the OSCs and OLEDs\u27 performance and will subsequently assist in further enhancing the efficiencies of OSCs and OLEDs. With better efficiency and longer lifetime, the OSCs and OLEDs will be competitive with their inorganic counterparts.
机译:近几十年来,有机半导体器件,例如有机太阳能电池(OSC),有机发光二极管(OLED)和有机场效应晶体管(OFET),引起了越来越多的关注。由于有机材料具有柔韧性,重量轻和潜在的低成本,因此有机半导体器件被认为是无机材料的替代品。本文主要针对OSC和OLED。OSC作为一种清洁,可再生的能源,其发展前景十分广阔。据报道,今年电池功率转换效率(PCE)为9.2%,而两年前为8%。 OSC属于所谓的第三代太阳能电池,并且仍在开发中。尽管OLED是一个更为成熟和研究得更好的领域,但已经有市场上推出了商业产品,但仍然存在几个关键问题:(1)OSC / OLED的成本仍然很高,这在很大程度上是由于制造工艺昂贵所致; (2)OSC / OLED的效率需要提高; (3)与无机类似物相比,OSC / OLED的寿命不足; (4)设备行为的物理模型并不令人满意。所有这些限制激发了对新有机材料,改进的器件架构,低成本制造方法以及对器件物理的更好理解的需求。对于OSC,我们尝试通过修改有源层/金属之间的中间层来改善PCE。我们发现乙二醇(EG)处理的聚(3,4-乙撑二氧噻吩):聚苯乙烯磺酸盐(PEDOT:PSS)改善了金属/聚合物界面处的空穴收集,此外还影响了聚(3-己基噻吩)的生长(P3HT):苯基-C61-丁酸甲酯(PCBM)的混合物,使相分离更有利于电荷收集。然后,我们研究了有机/无机串联细胞。我们还研究了薄的LiF层对基于铜酞菁(CuPc)/ C70的小分子OSC空穴收集的影响。薄的LiF层通常用作OLED中的电子注入层和OSC中的电子收集中间层。但是,一些报告显示它也可以帮助OLED注入空穴。在这里,我们首先证明它有助于OSC中的空穴收集,这在空气等离子体处理后更加明显,并探索了这种有趣的双重作用。对于OLED,我们专注于溶液处理方法以制造高效的磷光OLED。首先,我们研究了具有聚合物基质的OLED,并通过向系统中添加空穴和电子传输材料来增强了电荷注入。我们还应用了空穴阻挡和电子传输材料,以防止阴极猝灭发光。最后,我们用一个小分子取代了聚合物主体,以实现更高效的溶液处理小分子OLED(SMOLED);与更常见的真空热蒸发相比,这种方法具有成本效益。所有这些研究有助于我们更好地理解有机半导体材料与OSC和OLED性能之间的潜在关系,并随后将有助于进一步提高效率。 OSC和OLED。 OSC和OLED具有更高的效率和更长的使用寿命,将与其无机同类产品竞争。

著录项

  • 作者

    Xiao, Teng;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号